En 1949, un ENIAC fue capaz de obtener los primeros 2.037 decimales de π.
Quizás sea el número más famoso de todos. La relación entre la longitud de una circunferencia y su diámetro en la Geometría euclidiana, π (pi), es un número irracional. Se la considera una de las constantes matemáticas más importantes y resulta indispensables para la matemática, la física y la ingeniería. Te contamos la historia de este número que posee infinitos decimales y que no puede expresarse como un cociente entre dos enteros, cuyo valor (truncado) es 3,14159265358979323846...
Es indudable que π ha fascinado a la humanidad desde tiempos inmemoriales. En todas las épocas, los matemáticos más capaces han dedicado parte de su tiempo en la búsqueda de un algoritmo que permita calcular mejor o más rápidamente su valor. Concretamente, π expresa la relación que existe entre la longitud de una circunferencia y su diámetro dentro del marco de la llamada Geometría euclidiana (esta relación no es constante en geometrías no euclídeas). A pesar que para prácticamente cualquier propósito práctico imaginable basta con conocer una decena de decimales, la humanidad ha dedicado millones de horas hombre a calcular el mayor número posible de ellos, quizás buscando la tan esquiva periodicidad que permita expresarlo como el cociente entre dos enteros. Tal trabajo es, por supuesto, absolutamente inútil: desde 1761 sabemos que se trata de un número irracional, lo que significa que no puede expresarse como fracción de dos números enteros, tal como lo demostró el genial Johann Heinrich Lambert.
El valor de π se ha obtenido con diversas aproximaciones a lo largo de la historia, siendo una de las constantes matemáticas que más aparece en las ecuaciones de la física. El récord actual es de 2.576.980.370.000 de decimales, y lo calculó Daisuke Takahashi en un superordenador T2K Tsukuba System. El valor más antiguo que se conoce es 3,1605 y aparece escrito en el “Papiro de Ahmes”, encontrado en Egipto y datado en el año 1900 antes de Cristo. A pesar del “retroceso” en la precisión de π que significó la adopción de “3” (por motivos religiosos) en el comienzo de la era cristiana, a lo largo de los siglos este número se ha ido calculando cada vez con mayor numero de decimales correctos. En el año 263 de nuestra era, el chino Liu Hui calculó su valor como 3,14159 (un error de menos de 1 en un millón). En el año 1400, el matemático indio Madhava calculó 3,14159265359 (0,085 partes por millón de error).
Pero los algoritmos encontrados por los matemáticos a partir del siglo 17 rápidamente dispararon el numero de decimales conocidos. En 1841 William Rutherford calculó 208 decimales, de los cuales sólo los primeros 152 eran correctos. William Shanks, un matemático aficionado de origen inglés dedicó cerca de 20 años a calcular π y llegó a obtener 707 decimales en 1873. En el año 1944, D. F. Ferguson encontró un error en el decimal 528 de Shanks, a partir del cual todos los dígitos posteriores eran erróneos. El mismo Ferguson, en 1947, recalculó π con 808 decimales utilizando una calculadora mecánica. Pero la invención del ordenador llevaría esta carrera a limites insospechados.
En 1949, un ordenador ENIAC fue capaz de romper todos los récords anteriores al obtener los primeros 2.037 decimales de π en unas 70 horas de trabajo (seguramente, William Shanks hubiese dado su brazo derecho por una máquina así). Poco a poco fueron surgiendo ordenadores más potentes, que destronaban a los anteriores en el número de cifras calculadas, y en 1954 un NORAC superó la barrera de las 3000 cifras, al hallar los primeros 3.092 decimales correctos. A lo largo de los años 1960 los ordenadores IBM fueron batiendo récord tras récord, hasta que en 1966 un IBM 7030 llegó a los 250.000 decimales en unas 8 horas y media de trabajo. El primer millón de cifras de π y su inversa 1/π se puede consultarse por la WEB.
Pero nuestra curiosidad es más fuerte, y aun seguimos buscando la forma de obtener más y más precisión en la determinación del valor de π. Lejos han quedado las épocas donde la Iglesia sostenía que su valor era exactamente 3 (aunque cualquier niño con una cinta métrica pudiese demostrar que no era cierto) o cuando los egipcios se las ingeniaban para construir algunas de las obras más grandes de la antigüedad usando “3,1605” como base. Seguramente en pocos años superaremos la barrera de los 10 millones de millones de decimales. ¿Nos servirá para algo? Probablemente no. Pero nos habremos divertido recorriendo ese camino. ¿No crees?
No hay comentarios:
Publicar un comentario